پروژه شبیه سازی جریان زیرصوت(subsonic) در مجرای هوای ورودی(Air intakes) دیفیوزر داکت -S شکل در نرم افزار انسیس فلوئنت(Ansys Fluent)

1,100,000 تومان

با خرید این محصول، تمامی فایل های شبیه سازی پروژه به همراه گزارش کامل پروژه(pdf+word)  را دریافت خواهید کرد.

توضیحات

پروژه شبیه سازی جریان زیرصوت(subsonic) در مجرای هوای ورودی(Air intakes) دیفیوزر داکت –S شکل در نرم افزار انسیس فلوئنت(Ansys Fluent)

 

Simulation of Air Intake Subsonic Flow through S Shaped- Duct in Ansys Fluent Software

ورودی هوای S شکل(S-Shaped Air Intake):

ورودی هوا یکی از اجزای اصلی سیستم پیشرانش در انواع وسائل پرنده موتوردار است که وظیفه تحویل جریان آزاد به صورت یکنواخت و با سرعت مناسب را برعهده دارد. ورودی هوا نقش بسیار موثری در افزایش کارایی و عملکرد پرنده دارد و برخلاف شکل ظاهری آن دارای پیچیدگی های زیادی می باشد. ورودی اولین بخشی است که هوای ورودی به موتور از آن می گذرد. این بخش یک مجرای همگرا یا واگرا است و وظیفه آن کاهش سرعت و یکنواخت کردن جریان هوای ورودی به موتور است. اگر سرعت هوای ورودی به کمپرسور زیاد باشد، سرعت هوا در نوک پره های آن به سرعت صوت می رسد و برای گردش کمپرسور نیروی زیادی صرف خواهد شد. اگر سرعت هوای ورودی زیر صوت بود، این مدخل واگرا خواهد بود. اگر سرعت بالای سرعت صوت بود(مافوق صوت) باشد، این مجرا همگرا خواهد بود. زیرا رفتار جریان مافوق صوت و زیرصوت برعکس هم است. در یک جریان مافوق صوت هوا در عبور از یک مجرای همگرا سرعتش کم می شود و در سرعت های زیرصوت برعکس می باشد. بنابراین مجرای ورودی هواپیماهای زیرصوت واگرا است تا سرعت را کاهش دهد و کمکی نیز برای کمپرسور باشد. ورودی هوا (air intake) یکی از اجزای اصلی سیستم پیشرانش(propulsion) در انواع وسایل مختلف پرنده موتوردار است که وظیفه تحویل جریان آزاد به صورت یکنواخت و با سرعت مناسب به موتور را برعهده دارد. ورودی هوا نقش مهمی در افزایش کارایی و عملکرد وسیله پرونده دارد و برخلاف سادگی شکل ظاهری آن طراحی و ساخت آن دارای پیچیدگی های زیادی می باشد با طراحی خوب می توان میزان اغتشاش و آشفتگی هوای واردشده به موتور هواپیما را کاهش داد بازیافت فشار کل در خروجی ورودی هوا را بیشینه نمود که هدف نهایی از بهینه سازی رسیدن به این ویژگی می باشد. ورودی هوای موتورها برحسب کاربرد شکل و پیکربندی وسیله پرنده و به طور کلی اقتضای کل ماموریت وسیله پرنده دارای اشکال مختلفی هستند که یک نوع رایج آن از نوع ورودی های هوای از نوع S شکل می باشد

دینامیک سیالات محاسباتی (CFD):

دینامیک سیالات محاسباتی(CFD) یکی از بزرگترین زمینه هایی است که مکانیک قدیم را به علوم رایانه و توانمندی های نوین محاسباتی آن در نیمه دوم قرن بیستم و در سدة جدید میلادی وصل می کند. دینامیک سیالات محاسباتی علم پیش بینی جریان سیال، انتقال حرارت، انتقال جرم، واکنش های شیمیایی و پدیده های وابسته به آن به وسیلة حل معادلات ریاضی که قوانین فیزیکی را بیان می کنند، با استفاده از یک فرآیند عددی است. این معادلات شامل پایستاری جرم، مومنتوم، انرژی، ذرات و غیره است. در این روش با تبدیل معادلات دیفرانسیل پاره ای حاکم بر سیالات به معادلات جبری، امکان حل عددی این معادلات فراهم می شود. با تقسیم ناحیه موردنظر برای تحلیل به المان های کوچکتر و اعمال شرایط مرزی برای گره های مرزی با اعمال تقریب هایی، یک دستگاه معادلات خطی به دست می آید که با حل این دستگاه معادلات جبری، میدان سرعت، فشار و دما در ناحیه موردنظر بدست می آید. با استفاده از نتایج بدست آمده از حل معادلات می توان و برآیند نیروهای وارد بر سطوح، و ضریب انتقال حرارت و غیره را محاسبه نمود.اکنون روش دینامیک سیالات محاسباتی جای خود را در کنار روش های آزمایشگاهی و تحلیلی برای تحلیل مسائل سیالات باز کرده است و استفاده از این روش ها برای انجام تحلیل های مهندسی امری عادی شده است. درواقع تحلیل های دینامیک سیالات محاسباتی مکمل آزمایش ها و تجربیات بوده و مجموع تلاش ها و هزینه های موردنیاز در آزمایشگاه را کاهش می دهد. دینامیک سیالات محاسباتی به صورت گسترده در زمینه های مختلف صنعتی مرتبط با سیالات، انتقال حرارت و انتقال مواد به کمک سیال بکار گرفته می شود. از جمله این موارد می توان به صنعت کشتی سازی، صنعت خودروسازی، صنایع هوافضا و بسیاری موارد گسترده صنعتی دیگر اشاره کرد که دانش دینامیک سیالات محاسباتی به عنوان گره گشای مسائل صنعتی مرتبط تبدیل شده است. علی رغم اینکه قدمت دینامیک سیالات محاسباتی در دنیا چندان زیاد نیست، این شاخه از علم در ایران و در سال های اخیر، رشد بسیار خوبی داشته است. مکانیک سیالات، به عنوان یکی از رشته های مهندسی، همواره از جهت تنوع و گوناگونی شاخه های مورد مطالعه در حوزه آن مطرح بوده و از دیگر زمینه های مهندسی از این جهت متمایز بوده است.

روش های عددی مورد استفاده در CFD:

روش های عددی مورد استفاده در دینامیک سیالات محاسباتی عبارت است از:

۱- روش المان محدود؛

۲- روش حجم محدود؛

٣- روش تفاضل محدود؛

4-روش های طیفی.

در بین این روش ها، روش حجم محدود دارای کاربرد بیشتری می باشد و بیشتر نرم افزارهای تجاری، مانند نرم افزار انسیس فلوئنت در زمینه دینامیک سیالات محاسباتی نیز بر مبنای این روش بسط و توسعه یافته اند.

مراحل برنامه CFD:

۱) مدلسازی هندسه مسئله

۲) تولید شبکه مناسب برای حل

۳) انتخاب معادلات مناسب جهت حل

۴) تعریف شرایط مرزی

۵) گسسته سازی معادلات حل

۶) اجرای برنامه کامپیوتری

7) نتایج آماری و نموداری.

 

نرم افزار انسیس فلوئنت(ANSYS Fluent):

نرم افزار Ansys Fluent، یکی از قوی ترین نرم افزارهای محاسباتی برای شبیه سازی جریان سیال و انتقال حرارت در هندسه های پیچیده می باشد. برخی از قابلیت های این نرم افزار به صورت زیر می باشد: مدل سازی سیال های نیوتنی و غیر نیوتنی، جابجایی آزاد و اجباری، انتقال حرارت هدایتی و تشعشعی و جابجایی، چارچوب های چرخان و ساکن، مدل سازی جریان ها در هندسه های پیچیده دو بعدی و سه بعدی، مدلسازی جریان های پایا و گذرا، غير لزج، آرام و مغشوش، دو فازی و چند فازی، سطح آزاد با شکل های سطح پیچیده و مدل سازی جریان در محیط های متخلخل، مدل سازی مشعل های خانگی و صنعتی. از این نرم افزار در صنایع مختلف پتروشیمی، هوافضا، توربو ماشین های خودروسازی، الکترونیک (نیمه هادی ها و خنک سازی قطعات الکترونیک)، مبدل های حرارتی، تهویه مطبوع، مشعل سازی استفاده می شود. این نرم افزار قابلیت مدل سازی جریان های دو و سه بعدی را داراست. این نرم افزار بر پایه روش حجم محدود که یک روش بسیار قوی و مناسب در روش های دینامیک سیالات محاسباتی می باشد، بنا شده است. قابلیت های فراوانی نظیر مدل سازی جریانهای دائم و غير دائم، جریان لزج و غير لزج، احتراق، جریان مغشوش، حرکت ذرات جامد و قطرات مایع در یک فاز پیوسته و ده ها قابلیت دیگر Fluent را تبدیل به یک نرم افزار بسیار قوی و مشهور نموده است.

آزمایشات عملی و محاسبات تئوری، دو روش اصلی و مشخص برای پیش بینی میزان انتقال حرارت و چگونگی جریان سیال در کاربردهای مختلف صنعتی و تحقیقاتی می باشند. در اندازه گیری های تجربی به دلیل هزینه های زیاد ترجیح داده می شود که آزمایش ها بر روی مدلی با مقیاس کوچک تر از نسخه اصلی انجام پذیرد. حذف پیچیدگی ها و ساده سازی آزمایش ها، خطای دستگاه های اندازه گیری و بعضی موانع در راه اندازه گیری از جمله مشکلاتی هستند که روش های عملی با آنها روبه رو هستند و کارآیی این حالت ها را در بعضی موارد مورد سوال قرار می دهند. مهمترین امتیاز محاسبات تئوری در مقایسه با آزمایشهای تجربی، هزینه کم آن است. اگرچه در بسیاری موارد ترجیح داده می شود با استفاده از روش های محاسباتی، آنالیز جریان و انتقال حرارت صورت گیرد ولی تایید تحلیل های عددی نیاز به مقایسه با نتایج آزمایشگاهی و یا نتایج تایید شده دیگری دارد. در میان محققین، انجام پژوهش های تجربی ارزش بسیاری دارد و اگر بتوان آزمایش مطلوبی انجام داد، تحلیل های زیادی را بر محور آنها میتوان گسترش داد و اطلاعات فراوانی بدست آورد. در هر صورت با دسترسی به دستگاه های محاسبه گر و رایانه های قوی، امروزه در بسیاری از موارد آنالیز دینامیک سیالات و انتقال حرارت با روش های عددی انجام می پذیرد. هر چه پدیده مورد بررسی پیچیدگی بیشتری داشته باشد، روش های عددی اهمیت بیشتری پیدا می کنند. علاوه بر سرعت بیشتر محاسبات عددی، می توان با این روش ها اطلاعات کامل با جزئیات بیشتری از قبیل تغییرات سرعت، فشار، درجه حرارت و غیره را در سراسر حوزه مورد نظر به دست آورد. در مقابل، اغلب اوقات شبیه سازی آزمایشگاهی جهت بدست آوردن این گونه اطلاعات مشكل و مستلزم صرف زمان زیاد بوده و در بعضی شرایط غیر ممکن است. در اکثر مسایل مربوط به مکانیک سیالات، به دلیل پیچیدگی معادلات مربوطه، استفاده از حل تحلیلی امکان پذیر نمی باشد. فلوئنت یک نرم افزار کامپیوتری چند منظوره برای مدل سازی جریان سیال، انتقال حرارت و واکنش شیمیایی در هندسه نوشته شده است. با توجه به محیط مناسب نرم افزار جهت تعریف مساله و شرایط های پیچیده، تعریف شرایط مرزی گوناگون و حل مسایل پیچیده شامل تأثیر پدیده های مختلف به کمک این نرم افزار قابل حل می باشد. فلوئنت برای آنالیز و حل مسایل طراحی خاص، روش های شبیه سازی کامپیوتری متفاوتی را بکار می برد. برای راحتی کار، تعریف مساله، محاسبه و دیدن نتایج ، منوهای مختلفی در نظر گرفته شده است. وقتی نیاز باشد، Fluent می تواند مدل مورد نظر را از دیگر برنامه های نرم افزارهای تولید مدل که با آنها سازگاری دارد وارد کند. این نرم افزار امکان تغییر شبکه به صورت کامل و تحلیل جریان با شبکه های بی سازمان برای هندسه – های پیچیده را فراهم می سازد. نوع شبکه های قابل تولید و دریافت توسط این گروه نرم افزاری شامل شبکه هایی با المان های مثلثی و چهارضلعی (برای هندسه های دو بعدی ) و چهاروجهی، شش وجهی، هرمی یا گوهای (برای هندسه های سه بعدی) می باشد. همچنین Fluent به کاربر اجازه دست کاری شبکه (مثلا ریز کردن یا درشت کردن شبکه در مرز و مکان های لازم در هندسه) را می دهد. این بهینه سازی برای حل شبکه، قابلیتی در اختیار کاربر قرار می دهد که نتایج را در نواحی که دارای گرادیانهای بزرگ (مثل لایه مرزی و…) باشند، دقیق تر سازد.

در نرم افزار انسیس فلوئنت حل معادلات فیزیکی(پیوستگی، مومنتوم، انرژی و…) از روش حجم محدود استفاده می شود. در این روش از معادلات فیزیکی در شکل انتگرالی استفاده می گردد. در روش حجم محدود می توان میدان جریان و هندسه های پیچیده را به دلیل آنکه معادلات انتگرالی مستقیما در قلمروی فیزیکی به کار می روند استفاده نمود. در این روش می توان از شبکه با سازمان و بی سازمان استفاده نمود. در روش حجم محدود میدان جریان و هندسه به وسیله شبکه بندی انجام شده به تعداد محدودی حجم کنترل تقسیم بندی می شود؛ بنابراین شبکه بندی مدل موجب می گردد مرز حجم های کنترل مشخص شوند، در نتیجه محل برخورد صفحات در مرزهای حجم کنترل موجب ایجاد گره های مرزی می گردد و محاسبات در مرکز این حجم کنترل صورت می گیرد.

شرح پروژه:

در این پروژه شبیه سازی جریان مادون صوت(subsonic) در مجرای هوای ورودی(Air intakes) دیفیوزر داکت –S شکل در نرم افزار انسیس فلوئنت(Ansys Fluent) انجام شده است.

 

هندسه مسئله:

هندسه داکت ورودی S شکل در نرم افزار انسیس دیزاین مدلر(ANSYS Design Modeler) ترسیم شده است.

شبکه و مش بندی:

در گام دوم از روند شبیه سازی نیازمند شبکه بندی مناسب برای استفاده از روش حجم محدود می باشد. بنابراین یکی از مهم ترین و اساسی ترین قسمت در یک حل عددی با دقت قابل قبول با صرف کمترین هزینه و دقت مناسب و همچنین صرف زمان کم از موضوعات مهم در یک شبیه سازی موفق می باشد. در این پروژه از نرم افزار انسیس مشینگ( Ansys Meshing) به منظور شبکه بندی هندسه استفاده شده است. تولید یک شبکه مناسب تاثیر بسیار زیادی در دقت نتایج به دست آمده خواهد داشت. لازم است در نواحی که گرادیان های جریان زیاد است و یا سطح جسم از لحاظ هندسی با تغییرات زیادی همراه است، شبکه از تراکم مناسبی برخوردار باشد.

 

سیال:

سیال مورد استفاده هوا می باشد.

مدل لزجت:

مدل آشفتگی دو معادله ای k-epsilon استفاده شده است.

وابستگی سرعت-فشار:

به منظور ارتباط سرعت-فشار از الگوریتم حل کوپل(coupled) استفاده شده است.

نمونه نتایج شبیه سازی: